Airborne measurement of OH reactivity during INTEX-B

INTEX-B期间OH反应性的机载测量

J. Mao, X. Ren, W. H. Brune, J. R. Olson, J. H. Crawford, A. Fried, L. G. Huey, R. C. Cohen, B. Heikes, H. B. Singh, D. R. Blake, G. W. Sachse, G. S. Diskin, S. R. Hall, R. E. Shetter

DOI: 10.5194/acp-9-163-2009

期刊: Atmospheric chemistry and physics

摘要

Abstract. The measurement of OH reactivity, the inverse of the OH lifetime, provides a powerful tool to investigate atmospheric photochemistry. A new airborne OH reactivity instrument was designed and deployed for the first time on the NASA DC-8 aircraft during the second phase of Intercontinental Chemical Transport Experiment-B (INTEX-B) campaign, which was focused on the Asian pollution outflow over Pacific Ocean and was based in Hawaii and Alaska. The OH reactivity was measured by adding OH, generated by photolyzing water vapor with 185 nm UV light in a moveable wand, to the flow of ambient air in a flow tube and measuring the OH signal with laser induced fluorescence. As the wand was pulled back away from the OH detector, the OH signal decay was recorded; the slope of −Δln(signal)/Δ time was the OH reactivity. The overall absolute uncertainty at the 2σ confidence levels is about 1 s−1 at low altitudes (for decay about 6 s−1), and 0.7 s−1 at high altitudes (for decay about 2 s−1). From the median vertical profile obtained in the second phase of INTEX-B, the measured OH reactivity (4.0±1.0 s−1) is higher than the OH reactivity calculated from assuming that OH was in steady state (3.3&plusmn0.8 s−1), and even higher than the OH reactivity that was calculated from the total measurements of all OH reactants (1.6±0.4 s−1). Model calculations show that the missing OH reactivity is consistent with the over-predicted OH and under-predicted HCHO in the boundary layer and lower troposphere. The over-predicted OH and under-predicted HCHO suggest that the missing OH sinks are most likely related to some highly reactive VOCs that have HCHO as an oxidation product.

文章解读

研飞AI智能解析 PDF,回答研究者问题,助你秒懂论文

免费下载

期刊信息

期刊:

ISSN: 1680-7316

国际分区

类目分区
METEOROLOGY & ATMOSPHERIC SCIENCES1

国内分区

类目分区
地球科学1
地球科学, 气象与大气科学1
地球科学, 环境科学2
Built withby Ivy Science
Copyright © 2020-2024
版权所有:南京青藤格致信息科技有限公司
隐私和监管政策
苏ICP备20040574号-1
ICP许可证: 苏B2-20220377